

TUCS Dissertations

No XX, Month 2011

Marta Olszewska

On the Impact of Rigorous

Approaches on the Quality

of Development

On the Impact of Rigorous

Approaches on the Quality of

Development

Marta Olszewska

To be presented, with the permission of the Faculty…, for public criticism in the
Auditorium of …in May 12th, 2011 at 12:00.

Åbo Akademi University
Department of Information Technologies

Joukahaisenkatu 3-5A, 20520 Turku, Finland

2011

Supervised by

Docent Marina Waldén
Department of Information Technologies
Åbo Akademi University
Joukahaisenkatu 3-5A, 20520 Turku
Finland

Professor Kaisa Sere
Department of Information Technologies
Åbo Akademi University
Joukahaisenkatu 3-5A, 20520 Turku
Finland

Reviewed by

Professor Mark van den Brand
Mathematics and Computer Science Department
Eindhoven University of Technology
Eindhoven, The Netherlands

Doctor of Technology Cristina Seceleanu
School of Innovation, Design and Engineering
Division of Embedded Systems
Mälardalen University
Västerås, Sweden

Opponent

Professor
Department
University
City, Country

ISBN XXX-XX-XXXX-X

ISSN 1239-1883

Name of the printing house – Turku 2011

Abstract

Software systems are expanding and becoming increasingly present in
everyday activities. The constantly evolving society demands that they deliver
more functionality, are easy to use and work as expected. All these challenges
increase the size and complexity of a system. People may not be aware of a
presence of a software system until it malfunctions or even fails to perform. The
concept of being able to depend on the software is particularly significant when
it comes to the critical systems. At this point quality is regarded as an essential
issue, since any deficiencies may lead to considerable money loss or life
endangerment.

Traditional methods may not provide a sufficiently high level of quality.
Formal methods, on the other hand, allow us to achieve a high level of rigour
and can be applied to develop a complete system or only a critical part of it. This
ensures that the system works as required. However, formal methods are
sometimes considered as difficult to utilise in traditional developments.
Therefore, it is important to make them more accessible and reduce the gap
between the formal and traditional development methods. This thesis explores
the usability of rigorous approaches by giving an insight into formal designs
with the use of graphical notation. The understandability of formal modelling is
increased due to a compact representation of the development and related design
decisions.

The central objective of the thesis is to investigate the impact that rigorous
approaches have on quality of developments. This means that it is necessary to
establish certain techniques for evaluation of rigorous developments. Since we
are studying various development environments and methods, specific
measurement plans and a set of metrics need to be created for each setting. Our
goal is to provide methods for collecting data and record evidence of the
applicability of rigorous approaches. This will support the organisations in
making decisions about integration of formal methods into their development
processes.

It is important to control the software development, especially in its initial
stages. Therefore, we focus on the specification and modelling phases, as well as
related artefacts, e.g. models. These have significant influence on the quality of a
final system. Since application of formal methods may increase the complexity
of a system, it impacts its maintainability, and thus quality. Our goal is to
leverage quality of a system via metrics and measurements, as well as generic
refinement patterns, which are applied to a model and a specification. We argue
that they can facilitate the process of creating software systems, by e.g.
controlling complexity and providing the modelling guidelines. Moreover, we

ii

find them as additional mechanisms for quality control and improvement, also
for rigorous approaches.

The main contribution of this thesis is to provide the metrics and
measurements viewpoint on rigorous developments. Presented approaches are
applied to various case studies. The results of the investigation are juxtaposed
with the perception of domain experts. It is our aspiration to promote
measurements as an indispensable part of quality control process and a strategy
towards the quality improvement.

iii

Acknowledgements

To be done.

iv

List of Original Publications

[1] Marta Pląska, Marina Waldén and Colin Snook. Documenting the

Progress of the System Development. In The Book on Methods, Models
and Tools for Fault Tolerance. A. Romanovsky, M. Butler, C. Jones, and
E. Troubitsyna (Eds), LNCS 5454, Springer-Verlag, Heidelberg,
December 2009.

[2] Marta Olszewska (Pląska) and Marina Waldén. Measuring the Progress

of a System Development. In the book “Dependability and Computer

Engineering: Concepts for Software-Intensive Systems”, Luigia Petre,
Kaisa Sere and Elena Troubitsyna (Eds), IGI, July 2011.

[3] Marta Olszewska (Pląska) and Kaisa Sere. Specification Metrics for

Event-B Developments. In Proceedings of the CONQUEST 2010, 13th
International Conference on Quality Engineering in Software
Technology, Dresden, Germany, September 2010.

[4] Marta Olszewska (Pląska), Mikko Huova, Marina Waldén, Kaisa Sere,
Matti Linjama. Quality Analysis of Simulink Models. In Proceedings of
the CONQUEST 2009, 12th International Conference on Quality
Engineering in Software Technology, Nuremberg, Germany, September
2009. dpunkt.verlag GmbH Heidelberg, Germany.

[5] Marta Olszewska (Pląska). Simulink-Specific Design Quality Metrics.

TUCS Technical Report number 1002, Turku (Finland), March 2011.

[6] Marta Olszewska (Pląska). SMARTER Metrics. Accepted to 5th World
Congress on Software Quality 2011, Shanghai, China.

v

Contents

Part I .. 1

Overview ... 1

1 Introduction .. 2

2 Development Settings ... 4

2.1 Event-B .. 6

2.2 UML ... 9

2.3 UML-B .. 10

2.4 Simulink ... 11

3 Quality Measurements and Metrics ... 12

3.1 Software Quality .. 14

3.2 Measurements and Metrics .. 18

3.3 Complexity ... 19

4 Research Questions and Research Process ... 22

4.1 Problem Characterisation .. 23

4.2 Problem Specification and Research Challenges ... 25

4.3 Success Criteria .. 27

4.4 Research Process ... 28

5 Overview of Research Papers ... 34

6 Achievements - The Overall Picture .. 42

7 Related Work and Dedicated Literature ... 45

7.1 Dependability Aspect of Modelling ... 46

7.2 Measurements for Rigorous Developments.. 47

7.3 Controlling the Quality of Developments .. 48

7.4 Support for Quality in Simulink ... 49

8 Discussion and Conclusions .. 50

8.1 Discussion on Limitations of the Approach ... 51

8.2 Directions for Future Work .. 53

8.3 Concluding Remarks .. 55

Bibliography .. 57

Part II ... 67

Research Publications ... 67

Publication 1 ... 68

Publication 2 ... 93

Publication 3 ... 117

vi

Publication 4 ... 130

Publication 5 ... 147

Publication 6 ... 168

List of Figures
Figure 1. Development methodologies - overview. .. 5

Figure 2. General form of a machine in Event-B specification ... 6

Figure 3. General form of a context in Event-B specification .. 7

Figure 4. Refinement process. ... 8

Figure 5. Example of a state machine ... 10

Figure 6. Subsystem block (a) with its contents (b) (example taken from [63]) 12

Figure 7. The ISO / IEC 9126 quality attributes ... 15

Figure 8. Example of a decomposition tree of maintainability attribute 15

Figure 9. Quality attributes in our research ... 16

Figure 10. Dependability attributes ... 18

Figure 11. Extended structure of Evidence Based Research ... 29

Figure 12. The general methodology of design research. ... 30

Figure 13. Structuring of research ... 33

Figure 14. Relations between the papers presented in this thesis.................................... 34

List of Tables
Table 1. Cross-listing of Papers realising the Success criteria .. 42

Table 2. Initial artefacts and the outcome of our research with respect to development
environment. ... 45

Table 3. Limitations of the developed artefacts .. 52

 1

Part I

Overview

 2

1 Introduction
Every day we become more and more dependant on technology, since its

presence is continuously expanding in our everyday lives. We are surrounded
with software and computer systems more than ever. Even simple daily
activities, like using lifts or travelling to work involve using software that is
installed in the devices that facilitate our existence.

Quality of such systems becomes an issue, especially when this characteristic
can be understood differently by people with diverse backgrounds. It is a vital
matter for software engineers, business managers, and researchers [1] [2] [3] [4]
[5] [6] [7] [8]. Software quality, according to the definition by IEEE Standard
1061 [9], “is the degree in which software possesses a desired combination of
quality attributes”. It is hard to create software [10], but it is even more difficult
to achieve software of high quality [11] Moreover, it is a challenge to
meaningfully evaluate the outcome [12].

Ensuring that certain level of software quality is achieved should be assessed
throughout the software life cycle with the use of software metrics [3] [13]. In
particular, there is a need for software metrics and measurements for the initial
stages of the development, i.e. specification and modelling [14]. These can act as
supplementary mechanisms towards cost and effort savings. In general, the
objective of quality measurements is to decrease bias in the evaluation of
software. Moreover, their goal is to control quality by giving a quantitative basis
for making decisions regarding software. The application of metrics does not
remove the need for human factor in software assessment through opinions and
use knowledge for analysis of measurements. In the perspective of an
organisation one of the main purposes of software metrics is to have a significant
effect by making software quality more apparent [9].

There are several decisive factors that impact the quality of a software
product and related development process, which in consequence determine the
success of the development. Firstly, it is the broad knowledge of the domain and
the choice of an appropriate development methodology to be applied. Then, it is
the support of suitable technologies and tools that bring the reinforcements for
the system creation and evolution. Finally, there is a need for mechanisms, i.e.
metrics, to assess the quality of the development.

Quality, as a broad aspect, is especially important when it comes to the
critical systems (also called safety-critical systems) [15]. The failure or
malfunctioning of these systems can cause some hazardous effects. For instance,
it can endanger human lives by causing death or considerable injury, cause loss
or serious damage to equipment or lead to environmental harm. Moreover,

 3

severe financial losses can be involved. Therefore, creating high quality systems
that we can depend on is of the essence [16].

Traditional development methods cannot assure that a high enough quality of
a critical system is achieved [17]. However, this assurance can be provided by
formal methods. Application of formal methods brings high quality where it is
needed the most, but at the same time it may cause complexity issues. Moreover,
formal methods involve mathematical background that might make people
unenthusiastic about their application and sceptic about their usefulness [18].
These strengths and weaknesses of formal methods contributed to a rich history
of links between industry and academia [19]. However, there is still a noticeable
gap between these two communities [20], which can be diminished by tool
support and evidence of applicability of formal methods. This thesis provides
techniques to obtain the latter. Therefore, it is intended for academia and
industry communities.

There is a tendency to shift focus of metrics from the end development stages
to the phase of construction of a system [14]. The central concept is to provide
empirical evidence that the application of certain techniques early in the
lifecycle is a cost effective tactic towards quality improvement. This thesis
presents mechanisms for the assessment of the impact of formal approaches on
the quality of the initial development stages and artefacts. A suite of metrics is
established as apparatus for collecting evidence that capture the information
about the quality of software systems during their modelling stage. The objective
is to assess and possibly increase usability and manageability of artefacts, herein
specifications or models, developed with formal approaches. This can be
achieved by complexity control and measurements that are specific to the
development environment. These techniques can be applied regardless of
development methodology. Hence, they can be exploited also for non-critical
systems.

This thesis is structured as follows. In Section 2 we present the methodologies
that are relevant in perspective of our research by describing development
settings with respective tools. In Section 3 we depict quality models, as well as
metrics and measurements, with special focus on complexity. In Section 4 we
state generic research questions and limit the scope of the thesis by formulating
research problems. We also define success criteria and relate them to the given
problems. Moreover, we depict our research process and illustrate the structure
of our research. Section 5 shows an overview of papers included in this thesis.
Additionally, it expresses the links between papers and defined success criteria.
The overview of achievements is provided in Section 6, whereas related work is
portrayed in Section 7. The final remarks, together with limitations of the
presented approach and future work are to be found in Section 8.

 4

2 Development Settings
Development of critical software systems requires a high degree of rigour,

which can be provided by application of formal methods [17]. Our research is
deeply rooted in the rigorous development methods, that include formal and
semi-formal methods setting. By formal methods we denote mathematical
techniques for developing computer-based software and hardware systems.
Formal development is therefore a development, which requires the application
of formal methods. Semi-formal developments, on the other hand, signify the
application of the formal methods only to a part of a system, be it a component
or a subsystem of high criticality. They also mean omitting the proofs in favour
of e.g. simulation, as main analysis technique. It should be mentioned that the
semi-formal developments are also being referred to as ‘lightweight formal
methods’ and ‘semi-formal methods’. Semi-formal methods do not provide
mathematical semantics behind the complete development.

Choice of development methodology is a significant factor that influences the
probability of success in the project and achieving high quality software. In our
work we investigated formal and semi-formal approaches set in various
modelling environments. For each of the formal methods deployed in certain
environments we established measurement methodology and evaluation criteria
specific to them. In Figure 1 we present the concept of development settings and
a compact overview of the characteristics relevant with respect to our research.

 5

Figure 1. Development methodologies – overview

In Figure 1 we illustrate the three main development settings: Event-B
(Section 2.1), Statechart Diagrams (Section 2.2) and Simulink (Section 2.4).
These settings are grouped around the concept of Measurements (Section 3).
Furthermore, each of the settings is annotated with the type of development
method used, the development rigour, the activity involved, as well as the
artefact resulting from the development. Statechart Diagrams and Event-B are
overlapping, since they share some characteristics (described in Section 2.3).

In this Section we first describe the Event-B formal method and the related
refinement mechanism. Then we present three graphical development settings:
UML with statechart diagrams, the UML-B tool and the Simulink modelling
environment. When depicting Simulink environment, Contract-Based Design
methodology is also shown, since it provides a certain degree of rigour to the
Simulink developments.

 6

2.1 Event-B

Event-B [21] [22] is a formal method and modelling language for stepwise
system-level modelling and analysis, based on the Action Systems formalism
[23] [24]. It is derived from the B-Method [25], with which it has several
commonalities, e.g. set-theory and refinement idea. Nevertheless, the purpose of
the method application is not the same, i.e. the B-Method is focused on the
development of correct by construction [26] software, while Event-B is
dedicated to model full systems, including hardware, software and environment
of operation [27], for example distributed systems.

Event-B employs refinement to represent systems at different abstraction
levels, which enables us to gradually introduce more details to the constructed
system and to represent new levels of a system with more functionality.
Mathematical proofs are used to verify consistency between refinement levels.
Event-B provides rigour to the specification and design phases of the
development process of (critical) systems. It is effectively supported via the
Rodin platform [28], an Eclipse based tool, which is an open source “rich client
platform” that is extendable with plug-ins.

An Event-B specification uses a pseudo-programming notation – Abstract
Machine Notation (AMN) – and consists of a dynamic and a static part, called
machine and context respectively. An abstract Event-B machine (shown in
Figure 2) consists of its unique name and has the following constructs: context,
which links the dynamic part with the static one, a list of distinct variables that
give the attributes of the system; invariants– stating properties that the machine
variables should preserve; a collection of events – depicting operations on the
variables, where INITIALISATION is an event that initialises the system.

MACHINE Machine_0
SEES Context
VARIABLES var
INVARIANTS Inv(var)
EVENTS

INITIALISATION
evt1
…
evtN
END

Figure 2. General form of a machine in Event-B specification

The events are specified in the form
evtk = WHEN guard THEN substitution END

 7

where a guard is a state predicate and symbolises a condition for the execution
of the following action. A substitution is a B statement describing how the event
affects the program state and is given in the form of deterministic or
nondeterministic assignments of the system variables. In case the event is
parameterised it is given as ANY witness WHERE guard THEN substitution
END, where witness is a local variable visible within an event and the guard and
substitution are as before [29].

The context, shown in Figure 3, encapsulates the sets sets and constants const
of the model with their properties given by axioms axm and theorems th. It is
accessed by the machine through the SEES relationship.

CONTEXT Context_1
EXTENDS Context
SETS sets
CONSTANTS const
AXIOMS axm
THEOREMS th

Figure 3. General form of a context in Event-B specification

In this thesis we first focus on the modelling of systems using the event-based
approach and on increasing the usability of the modelling activity. Then we
concentrate on syntactical properties of the Event-B specifications in order to be
able to evaluate the specification with measurements.

 Refinement

The Event-B method is based on a stepwise formal development method
called refinement [26] [30] [31], which allows the system to be created gradually
following refinement rules [32] [33] [34]. Stepwise refinement is a top-down
approach [30], which aids handling all the implementation matters by
decomposing the problems to be specified and gradually introducing details of
the system to the specification. In the refinement process an abstract
specification A is transformed into a more concrete and deterministic system C

that preserves the functionality of A, which is shown in Figure 4.

 8

Figure 4. Refinement process

In our work we analyse superposition refinement [35] and its impact on
software development. Superposition refinement is a method, which enables a
specification to have new variables and related events that operate on them
within a refinement step. This type of refinement also follows the refinement
rules (referred to as proof obligations) [33].

The formal development starts from specifying the abstract machine
(presented in Figure 2) and then refining it in a number of steps. Each
consecutive machine is called REFINEMENT and is signified as such with a
separate construct in the Event-B machine (other constructs and their roles
remain the same). It also identifies the machine being refined, so that the
refinement chain and the modelling process can be tracked and controlled. The
static part of the specification can also be refined, which is indicated by the
EXTENDS clause.

The correctness of the system development, resulting in correct by

construction [26] system, is ensured by mathematically proving that the abstract
model is consistent and feasible. It involves that an invariant is established after
initialisation of the machine and that each event should preserve the invariant.

 Refinement Patterns, Decomposition and Modularity

Event-B allows the systems to be rigorously modelled relying on refinement
rules. It is supported by the Rodin tool that is associated with multiple plug-ins,
which together facilitate the high-level design process. In order to be able to
tackle accidental complexity and to increase the modularity of large systems,
various modelling mechanisms are used, like refinement patterns or
decomposition methods.

In general, patterns contribute to reuse. Furthermore, they are elegant and
straightforward solutions for modelling [36]. In this work we refer to generic

 9

refinement patterns [33] that are specific for Event-B developments. However,
other types of patterns for the Event-B environment have been investigated as
well [37] [38].

The decomposition techniques, on the other hand, are employed not only to
reduce the accidental complexity, but also to amplify the modularity [39] of
large systems. The models are decomposed and refined into several independent
sub-models. This strategy allows for the proofs to be split over the resulting sub-
models, which decreases the complexity of proving. The Event-B decomposition
tool [40] not only supports the decomposition of a model, but also allows team
development over the same model. Therefore, it adds value to the large-scale
developments, e.g. in industrial environment.

2.2 UML

Event-B and refinement method ensure the correctness of the constructed
system via mathematical notation. However, there are also diagrammatic
modelling notations, which are independent of methods and emphasise graphical
aspects of modelling, e.g. efficient communication between development team
members [41]. The Unified Modelling Language (UML) [42] [43] is a popular
and commonly used modelling language, which supports the model-driven
development (MDD) [44] and is appropriate for the top-down development
framework. UML is used to model (specify, modify, construct), visualize, and
simultaneously document the artefacts in the development of software-intensive
systems. It is used for representation of dynamic behaviour and static structure in
a graphical manner from different view points via different types of diagrams.
This visualisation aids software engineers, managers and developers, as well as
increases the understandability of the developed system. It can also serve as a
common ground for the communication with customers.

In our work we benefit from a subset of UML, namely statechart diagrams,
since they provide a dynamic view of the system. A UML state machine diagram
is a behaviour diagram that is used to depict the functionality of the system by
describing all possible states and state transitions of the system. The current state
of the system depends on the preceding transition and its associated condition
(guard). There are other diagram elements that deepen the graphical description
of the system under development, just to mention entry and exit actions, simple
and composite states, as well as events.

In this work we talk about behavioural state machines that are used to model
the behaviour of specific entities. Statecharts are used to model event-driven
developments (reactive systems) and describe the flow of control from one state
to another state. Modelling with statecharts starts from a very general, abstract,

 10

model and is iteratively detailed with transformations to achieve a more concrete
one. Among many of the intricate modelling instruments, statechart diagrams
propose method for the decomposition (for hierarchical states, also called or-
states) and synchronisation (and-states). These mechanisms facilitate modelling
of complex relationships between states.

A simple example of a statechart diagram is presented in Figure 5, where the
statechart consists of start and final states, two states st1 and st2 and two named
transitions tr1 and tr2, where tr1 is a self-transition.

Figure 5. Example of a state machine

Modelling with the use of UML is related to modelling in an Event-B setting.
Developments illustrated by UML state machine diagrams are closely linked to
the ones represented by abstract state machine (ASM) notation [45] [46] [47].
These visualisations are provided by one of the plug-ins of the Rodin platform,
namely UML-like diagrams. This type of graphical modelling is also associated
with the diagrammatic form of Simulink diagrams, a graphical modelling
environment (see sub-section 2.4). UML state machine diagrams overcome the
restrictions of traditional finite state machines (FSM) [48] [49] while
maintaining their main advantages. UML state machines establish the new idea
of hierarchically nested states and orthogonal regions, while expanding the
concept of actions. However, due to the significantly enhanced realization of the
mathematical concept of FSM, the degree of rigour is much lower [50] than in
formal approaches, e.g. Event-B. Therefore, there is a trade-off between UML
and formal methods. The former method is straightforward and ambiguous,
whereas the latter requires a certain degree of knowledge needed for describing
the system using precise mathematical notation. These factors need to be
considered when deciding on the type of development process.

2.3 UML-B

A combination of quality assurance provided by formal methods and the
intuitiveness given by graphical modelling notations can be found in the UML-B
tool [51] [52] [53]. It is a graphical front end to Event-B that enables
visualisation of the system being modelled. UML-B narrows the existing gap
between formal methods research and practical software development [20], by
integrating the formal reasoning with the UML-like constructs. It uses
diagrammatic notation based on UML [54] style, i.e. state machines, which

 11

increases the understandability of the model. The visualisation of the system
modelling increases the usability and user friendliness of formal approaches by
improving the understandability of the development [55].

UML-B offers the functionality for drawing state machine (and class)
diagrams, and translating them directly into Event-B. The strong integration with
Event-B tools makes the Event-B static checker and prover automatically carry
out verification of a model, so that the errors found at this stage are apparent on
UML-B diagrams. UML-B supports refinement mechanisms and fits well with
Event-B refinement framework. UML-B is an open-source tool, which uses the
Eclipse Modelling Framework (EMF) [56] to generate a repository for UML-B
models from a meta-model diagram. The drawing tool is based on the Graphical
Modelling Framework (GMF) [57].

2.4 Simulink

Simulink® [58] is another diagrammatic modelling setting, which is used in
our work. It is a MathWorks [59] commercial toolbox and an environment for
Model-Based Design [60] [61] of dynamic and embedded systems that gained
industrial importance. It provides an interactive graphical environment and a
customisable set of block libraries that allows one to design, simulate,
implement, and test a variety of time-varying systems, including
communications and controls. Simulink can be used to examine the behaviour of
a variety of real-world dynamic systems, which allows multi-domain simulation
of the created models.

 Simulink Diagrams

An example of a Simulink model is presented in Figure 6. The dataflow
diagram is made of rectangular blocks that consist of one or more inputs, states
and outputs. They are inter-connected by arrows, called signals, which represent
connections of block inputs to block outputs. Each block represents an
elementary dynamic system that produces some output. The elliptic shaped
elements in the diagram are called inports and outports and represent the
connection points between blocks and signals.

 12

a)

b)

Figure 6. Subsystem block (a) with its contents (b) (example taken from [62])

The blocks in the model can be structured into subsystem blocks, which
facilitate modelling and allows for the models to be hierarchically structured, as
seen in Figure 6. Such subsystem blocks can have any number of ports for input
and output of data to and from the system, respectively. From the measurements
point of view we are interested in the structural aspect of the diagram and
interrelation between the subsystems of the Simulink model. We are also
addressing the issue of the impact of a rigorous development methodology on
the quality of the model.

 Contract-Based Design

In order for the systems to be built in a correct by construction manner, the
Contract-Based Design method has been used for Simulink [63] [64]. It is a
rigorous approach for stepwise design that incorporates modular techniques of
system design with formal reasoning about their correctness. Contracts consist of
the pre- and post-conditions for programs or parts of it. They give directives for
decomposing functionality into components, as well as advice on analysis of
system correctness. The idea of contracts appeared in [65] [66] [67] [68] giving
clear guidelines for the design process, covering the inheritance and exception
handling issues, as well as documentation. Contracts in Simulink provide
comprehensive formal background for design and analysis of systems in a
setting that is popular and powerful. Moreover, they help to construct the system
by providing a certain degree of control over development and thus limiting the
number of defects introduced into the system. Contracts also facilitate the
documentation of the system during the design.

3 Quality Measurements and Metrics
High quality of software is considered essential for the critical systems [16].

Therefore, quality assessment of artefacts related to critical systems is important
regardless of the development environment and type of rigorous methods used,

 13

or the application domain. Software quality is the degree in which the given
software has a grouping of quality characteristics that is considered necessary
[9].

Our objective is to assess and analyse the impact of rigorous types of
developments on the quality of produced artefacts, rather than rigorously model
some large-scale and complex critical system. The formal methods in our
interest are Event-B and Contract-Based Design, while statecharts are in our
focus for semi-formal developments. The secondary aim is to increase the
maintainability, usability and improve the understandability [69] of the formal
designs with the use of visual notations, as well as environment-specific metrics
and measurements.

The challenge is to tackle the formal modelling issue from the perspective of
the developer and manager. It is addressed by facilitating the development
process in its early stage, e.g. by providing control of design with patterns and
quality measurements.

The work presented in this thesis concerns evaluation of certain artefacts: a
specification, a model of a system or component, impact of a development
methodology on the product or the development process itself. In order to assess
these artefacts, it was necessary to provide suitable evaluation techniques. In our
research we have mainly relied on the direct and indirect measurements specific
for the development environment. The latter were computed according to the
metrics we established.

Our metrics are derived from the ones recognised and commonly used in
software engineering community. We adapted them for different development
environment and domain. These metrics are considered as artefacts in the
following parts of the thesis. Knowing the history of application of certain
metrics, their advantages and drawbacks, we were able to narrow down the
feasibility of metrics to our purpose. The measurements include product and
process measurements. Our objective is to evaluate (software) system quality at
the early development lifecycle in perspective of maintainability and usability,
as well as characteristics related to these.

The maintainability and usability characteristics are strongly and directly
affected by complexity [70]. In general, the complexity and size of the systems
are continuously amplifying in every application field due to increasing
requirements that need to be fulfilled. The essential complexity is the lower
bound of the degree of complexity of the system after which the complexity of
the system can only escalate, possibly leading to worse quality. It is the
accidental complexity that can and should be controlled [71], in order to obtain
high quality products. Therefore we are interested in investigating complexity,
especially in the design stage, in diverse modelling development environments,

 14

where the control and feedback provided for the project can help in achieving
successful development.

It needs to be mentioned that we have intentionally concentrated on the
engineering aspect of the proposed solutions. This practicality in our work
originates from the fact that measurement as such is a hands-on undertaking and
needs to be usable and applicable.

This Section is structured as follows. First we present the general concept of
software quality and then illustrate the idea of quality models. Next we describe
the maintainability and usability attributes. Finally, we show the dependability
aspect in software quality research.

3.1 Software Quality

It is beneficial to have clear quality goals when developing a quality software
product. The quality characteristics, called attributes, and their relationships
should be defined at the start of the development. There are two types of
attributes: internal and external. The former are being measured purely in terms
of the artefact itself, whereas the latter are dependant on other factors, e.g.
environment and human comprehension. We describe them in more detail in
Section 3.2.

ISO/IEC 9126, which is now relabelled to ISO 25000 series, gives a clear
decomposition of external quality attributes [69], where the quality consists of
six attributes: functionality, reliability, usability, efficiency, maintainability and
portability (see Figure 7). One should mention that these signify aspects of end-
product quality for the software to be developed [72]. Some attributes are
overlapping with those given in IEEE 1061 standard [9].

A different standard, e.g. ISO/IEC 15504, can be used for the assessment and
improvement of development process [73]. In our work we study the impact of
used development methodologies on the quality of product and related artefacts,
such as specification or model. The observation of a development process is thus
an inevitable part of our research.

Figure 7. The ISO / IEC 9126 quality attributes

 Quality Models

A systematic representation of features that are important for the developed
system allows for more disciplined evaluation of software quality. Therefore the
notion of quality is often represented as a
quality models, just to mention Boehm
tree-like approach, see
quality factors are iteratively decomposed to lower level sub
quality criteria. The leaf level of this tree consists of
enable measurements of a specific criterion. The early quality models
are to some degree included in above

Figure 8. Example of a decomposition tree of maintainability attribute

Metric

Criteria

Factor

15

The ISO / IEC 9126 quality attributes

Quality Models

representation of features that are important for the developed
m allows for more disciplined evaluation of software quality. Therefore the

notion of quality is often represented as a model. There are many fixed software

, just to mention Boehm [74] and McCall [75] models. They use
like approach, see Figure 8 [13], where high level attributes identified as

are iteratively decomposed to lower level sub-attributes, called
. The leaf level of this tree consists of quality metrics

enable measurements of a specific criterion. The early quality models
are to some degree included in above mentioned ISO/IEC 9126 standard.

Example of a decomposition tree of maintainability attribute

Maintainability

Testability

Degree of testing Effort

Correctability

Fault counts

representation of features that are important for the developed
m allows for more disciplined evaluation of software quality. Therefore the

fixed software

models. They use a
, where high level attributes identified as

attributes, called
quality metrics, which

enable measurements of a specific criterion. The early quality models [74] [75]
mentioned ISO/IEC 9126 standard.

Correctability

Fault counts

 16

Software quality models and their derivatives can be customised for
individual purpose [76] by accepting the quality decomposition concept and
focussing on the quality attributes of the highest priority for the given
development. The customised quality models can also give the key software
attributes for a certain development phase or development artefact, e.g.
specification.

For the purpose of our research we defined our own software quality model
according to the priorities of investigated developments. The model consists of
maintainability and usability attributes. We concentrate on these in perspective
of early stage development artefacts, i.e. a specification and a software model,
rather than a deployed product. Early control of development allows identifying
problems in the initial stages. Timely reaction to these issues is cost efficient and
requires less effort, in contrast with their discovery in later development stages
[77].

In Figure 9 we present the quality attributes (factors) with their sub-attributes
(criteria), which are the measurement objectives in our research. It should be
mentioned that some quality factors are not independent, meaning that they can
have overlapping criteria and be characterised using the same metric.

Figure 9. Quality attributes in our research

 Maintainability and Usability

We define maintainability as the aptitude of an artefact to undergo repair and
evolution. We investigate issues related to the maintainability attribute, meaning
the easiness to analyse, manage and modify an artefact, e.g. a specification or a
model. We also explore the stability issue with respect to certain type of data-
flow models. Here we do not discuss the entire software that is executable or
deployed; rather, we concentrate on the system specification and design stage by
evaluating aspects of interest for each attribute. We share the opinion of the

 17

Software Engineering Institute [78] that the techniques for the assessment of a
system design before it is built have a great value. We focus on analysability,
modifiability, stability and also manageability sub-attributes, which can be found
well structured in the ISO/IEC 9126-1 standard (superseded by ISO/IEC 25000:
Software engineering: Software product Quality Requirements and Evaluation,
SQuaRE, Guide to SQuaRE) [69]. To some degree reusability of an artefact is
also in the scope of our research.

We also examine the usability attribute defined as a measure of how well
users can benefit from some artefact, be it a system, component or a model.
Usability and its sub-attributes are evaluated for the artefacts at the early stages
of development. We focus on these human related sub-attributes, i.e.
understandability and learnability with respect to a specification and a model of
software system. Moreover, we investigate flexibility and effectiveness of
formal methods, since the development approach is often decisive when
constructing software. Above mentioned sub-attributes are also important for the
assessment of the suitability of the development methodology and possible
improvements of the development process. It should be mentioned that usability
is treated by ISO standard on the same hierarchy level as maintainability. We
concentrate on maintainability and usability in order to use our findings to
influence the attitude of developers and managers towards formal approaches.

 Dependability Aspect

Usability, as well as maintainability (more precisely, its sub-attributes
adaptability and manageability), directly affect the dependability property [79].
For safety critical systems it is dependability that is the key property, understood
as ability to avoid service failures that are more frequent and more severe than is
acceptable [79]. It needs to be mentioned that the notion of dependability has
been recognised by various communities in a different way. We use the
dependability taxonomy first presented by Laprie [80], then Software
Engineering Institute (SEI) [78] and then confirmed and further extended by the
dependability experts [79]. In Figure 10 [79] we show a viewpoint on structuring
of the quality attributes that is different than the one presented earlier in this
section. The Dependability property is decomposed into six quality sub-
attributes: availability, reliability, safety, confidentiality, integrity and
maintainability. We focus on the very last one, as we previously described.

Figure 10. Dependability attributes

After we decompose
measures for the lowest level attributes
relationships between
characteristic that impact
the type of the development method and specificity of the development
environment. Additionally, we are investigating the
modularisation of models in the perspective of maintainability and usability
attributes.

3.2 Measurements and Metrics

Measurements and
are vital in the assessment of the quality of the system or development method
[13]. They are applied to the lowest level sub
model. Metrics provide techniques that transform the data and represent relations
between certain characteristics while measurements give “facts and numbers”
type of answers about measured artefacts. Measurement should be
i.e. carefully planned and targeting the clearly defined goals among other
organisation-specific criteria.
to measurement activity, as well as to present the findings.
concept in the measurement terminology and decision making is
relates a metric to a baseline or an expected result and provides an early insight
into development and its quality.

Dependability

18

. Dependability attributes

After we decompose the quality attributes, we have to decide on specific
measures for the lowest level attributes. Subsequently we need to
relationships between the measures. We focus on complexity, as it is a

impacts both maintainability and usability. It is influenced by
he development method and specificity of the development

. Additionally, we are investigating the problem of patterns and
of models in the perspective of maintainability and usability

Measurements and Metrics

and metrics, as well as analysis of the measurement outcome
assessment of the quality of the system or development method

They are applied to the lowest level sub-attributes in the software quality
Metrics provide techniques that transform the data and represent relations

between certain characteristics while measurements give “facts and numbers”
type of answers about measured artefacts. Measurement should be effective

carefully planned and targeting the clearly defined goals among other
specific criteria. Analysis is used to bring understandability aspect

to measurement activity, as well as to present the findings. Another important
in the measurement terminology and decision making is an indicator

relates a metric to a baseline or an expected result and provides an early insight
into development and its quality.

Dependability

Availability

Reliability

Safety

Confidentiality

Integrity

Maintainability

on specific
. Subsequently we need to find the

We focus on complexity, as it is a
is influenced by

he development method and specificity of the development
patterns and

of models in the perspective of maintainability and usability

of the measurement outcome
assessment of the quality of the system or development method

attributes in the software quality
Metrics provide techniques that transform the data and represent relations

between certain characteristics while measurements give “facts and numbers”
effective [81],

carefully planned and targeting the clearly defined goals among other
is used to bring understandability aspect

Another important
indicator. It

relates a metric to a baseline or an expected result and provides an early insight

 19

We collect direct and indirect measurements [82] specific for certain
development setting, which regard product and process measurements. We
record size measurements, primitives count, development duration, duration of
certain development phases, number of defects, number of elements that are
setting-specific, all of which are considered as direct measurements. The
indirect measurements are obtained with the use of metrics and measurement
models that are regarding the relations between the direct measurements, e.g.
number of defects with respect to their origin and removal phases, interrelations
between elements, etc.

We mostly focus on internal (static) attributes, meaning that they are
measured entirely in terms of the products or processes themselves and do not
rely on software execution [69]. The external attributes are considered when
human factors are involved, e.g. regarding the perception of the developers. We
mostly base our quality analysis on the quantitative data, which means that in
order to describe some attribute we use vast range of numerical measurements.
However, we confirm our results with experts from the domain, who provide us
with qualitative, even subjective, assessments via non-numerical measurement
methods.

All of the measurements should be meaningful, meaning that they should
preserve their truth or falsity regardless of the change under allowable
transformation [76] [83]. Meaningfulness also enables us to establish the type of
operations that can be performed on various measures. E.g. it seems that the
meaningful measure of complexity as a generic feature is impossible to achieve,
however a specific view of complexity is not considered as a “holy grail”
anymore [76]. The viewpoint and assumptions are necessary to use the measures
in a proper and relevant manner [84].

3.3 Complexity

Complexity is a characteristic that impacts quality of the software system. It
influences not only reliability due to higher probability of error occurrences [85],
but also maintainability [86], and in particular understandability of the system
and later system reuse. Moreover, it affects development effort, costs and risks
[87]. Since the complexity of the software (systems) is continuously growing
[10] [88] and is projected to grow geometrically [89], we focus our interest on
establishing complexity models for certain development settings. In order to
manage the complexity, it is necessary to have suitable means of measurement
and analysis. We find it beneficial to measure complexity and related features
already at the early development stages. Our work involves:

 20

• syntactical complexity for the analysis of complexity on the language
level (Halstead [90]),

• system complexity for the inter and intra complexity analysis on the
model level (Card and Glass [91])

• cyclomatic (conditional) complexity for the analysis of independent paths
in a program (McCabe) [92]

• design quality metrics for the analysis of the dependencies within the
model (Robert C. Martin [93]).

Complexity in software systems can be assessed from many perspectives,
depending on the development environment or granularity of the investigation.
We address the problem of specifying the indicators of complexity in the syntax
of specification language and in a model of a system at the design stage. Here
we present in detail the measures and metrics that we listed earlier.

 Halstead’s Software Science

We benefit from the controversial Halstead’s Software Science [90] and
derive syntactical metrics for Event-B specifications from Halstead metrics. The
original metrics are based on collection of tokens classified either as operators or
operands. The number of different tokens (n1 for operators, n2 for operands) and
the total number of occurrences (N1 and N2, respectively) of each token are
calculated. Based on these primitives, a system of equations was developed. It
expresses the total vocabulary n, the overall program length N, the actual volume
V, the program difficulty D, the program level (which is commonly considered
as a measure of software complexity) and other features, like the development
effort E. The equations are shown in Listing 1:

• n = n1 + n2 (Vocabulary)
• N = N1 + N2 (Length)
• V = N * log2(n) (Volume)
• D = (n1/2) * (N2/n2) (Difficulty)
• L = 1/D (Level)
• E = V/L (Effort)

Listing 1. Halstead Software Science

We are aware that there have been many critical opinions about these
proposed metrics [94], just to mention the difficulty of deciding whether a token
is interpreted as operator or operand. Moreover, the assumptions of Halstead
metrics that regard effort estimations seem theoretically dubious. Finally, there
are not enough studies to confirm or reject validity of these metrics. However,

 21

we carefully adjusted the metrics to the Event-B setting by meaningfully
defining primitives with regard to the Event-B dynamic and static parts of the
specification, as will be described in Section 5, Paper 3. Furthermore, we
included the refinement mechanisms and their impact on certain specification
constructs to our model.

 Card and Glass Complexity

The Card and Glass complexity metric [91] is a system-level complexity
model and is represented as a sum of structural and data complexities. The
metric is based on the structure of the model of the system and its interrelations,
as well as Input-Output properties. Structural complexity S is defined as the
mean of squared values of fan-out per number of modules:

� �
∑ �����	

�
 ,

where f(i) is fan-out of module i and n is a number of modules in the system.
Fan-out is a count of modules that are called by a given module.

Data complexity D is defined as a function that is dependent on the number of
Input/Output variables and inversely dependent on the number of fan-out in the
module. This is given by the following equation:

� �
���

�·��������
,

where V(i) is the number of Input/Output variables in a module i, f(i) and n are
as above. The total complexity C is computed as a sum of structural and data
complexities presented earlier (C=S+D). Card and Glass complexity model gives
guidelines on accomplishing a low complexity design. In our work it is used in
the Simulink modelling environment, with respect to the elements specific to the
Simulink diagram, as will be presented in Section 5, Paper 4.

 McCabe Complexity

McCabe complexity [92] is a software metric representing the number of
linearly independent paths that comprise the program. It is a cyclomatic number,
which is computed using the control flow graph of the program: nodes and
directed edges that connect these nodes. The complexity is computed according
to the formula:

C(G) = e – n + 2p,

where C is the cyclomatic complexity of graph G, e and n is the number of edges
and nodes of the graph G, and p is the number of connected components. The
measurement of cyclomatic complexity was designed to indicate testability and

 22

understandability (maintainability) of a program. In our work we apply it to
Progress Diagrams and indirectly to Event-B graphical representation. We also
extend the applicability of this metric to statechart diagrams. It is presented in
Section 5, Paper 2.

 Martin’s Object-Oriented Design Quality Metrics

We also benefit from Martin’s Object-Oriented Interdependencies measure
[93], which presents a set of metrics that can be used to evaluate the quality of
an object-oriented design in perspective of the inter-relations between the
subsystems of this design. The proposed metrics measure the degree of
correspondence between the design and the pattern of dependency and
abstraction, which were defined by the author as sound with regard to his
criteria. We adjust these metrics and apply them in the Simulink environment in
order to assess the model in perspective of maintainability and reuse, as well as
way to indicate the possible fragilities in the design. This is described in Section
5, Paper 5.

4 Research Questions and Research Process
Our research was inspired by the emerging problems and requirements

presented by the ongoing projects in the Distributed Systems Laboratory,
specifically RODIN (Rigorous Open Development Environment for Complex
Systems) and its continuation DEPLOY (Industrial Deployment of System
Engineering Methods Providing High Dependability and Productivity), as well
as ITCEE (Improving Transient Control and Energy Efficiency by Digital
Hydraulics). The possibility of experimentation within these projects was an
important factor in the research process, e.g. when combining the existing
methodologies or using them in a different context. The research results
facilitated the cross-domain technology transfer and contributed to the overall
outcome of the projects.

Our work was also determined by the current status of the research on
measurements performed for critical systems, as well as the need for evidence of
the impact of rigorous methods on the system developments. Furthermore, the
open research possibilities were identified as a motivating force that guided to
the innovative aspects of this work.

In this Section we first characterise the generic questions that this thesis
addresses by identifying the objective of our work and decomposing it according
to the research setting. Then we specify the research problems and challenges.
Next we define criteria, which we denote as a successful result of our research.

 23

This is followed by description of research process, i.e. methods and techniques
used, as well as illustration of the research structure.

4.1 Problem Characterisation

Formal methods have proven to be successful in industry in the safety critical
applications [95] [96] [97]. The often mentioned example from the
transportation domain is the Meteor line 14 driverless metro in Paris [98] [99].
However there are several large-scale success stories, the outcome of which can
be observed in every day life [100] [101] [102]. The described triumph of formal
methods gives the impression of promising results when integrated into the
development process. However, some reservation remains regarding the
(industrial) application of formal methods such as: the degree of feasibility of
the method for the application area, cost and time necessary for technology
transfer, impact of the methodology on the development duration, etc [103].
Characteristics like the mathematical background of a developer and a feasible
tool support are identified as the obstacles for the technology transfer.

Therefore evidence should be collected to increase awareness regarding the
rigorous approaches. The need for appropriate measurement system for
“validating the claims of the formal methods community that their models and
theories enhance the quality of software products and improve the cost-
effectiveness of software processes” is already provided in [104] [83]. The
advantage of formal approaches in industry in the perspective of effectiveness of
the methods used is questioned in [105], and [106] where authors point towards
lack of accurate and scientifically based measurement data.

We tackle the problems with lack of evidence attesting that formal methods
positively influence the quality of the developed systems. We search for facts,
which could be the decisive factors to provide insight to the managers and other
industry representatives about the potential that formal methods bring. The
benefits and, perhaps, drawbacks of the approach need to be demonstrated via
“facts and numbers”, so that conscious decisions regarding the system
development methodology can be made.

The evidence collection regarding the impact of formal methods on the
development process and product quality implicates providing particular
instruments for the assessment. This means setting up a measurement program
or providing a set of metrics specific for certain development setting. The
measurement program should encompass a collection of metrics that accurately
reflect the attributes about which we want to have the information. For instance
a top-down Goal Question Metric (GQM) approach [107] [108] or
GQM+Strategies [109] can be useful for identifying the measurement objective.

 24

One should keep in mind that the focus of quality measurements has been
shifted from end-development phases to the early stages, e.g. to specification
and modelling activities. This means that if already existing and validated
metrics should be re-used, they need to be “lifted” and adjusted to fit the current
purpose. Afterwards, they need to be validated against a scientifically significant
case study. Moreover the experiments should be repeated, so that the
observations that are being made are sound.

Until now, there have been either some quality assurance activities or
measurement programs that were imposed by the stakeholders or certain
standards. Many of these could not be published due to confidentiality matters.
We consider the confidentiality issues and privacy policy regarding the (large-
scale industrial) projects as the most important obstacles for data collection. We
do understand the reasoning behind the secrecy; however, we strongly feel that
these barriers are the main causes for the impediment in the information flow.
Hence, the statistics and the access to the pilot developments given by the
industrial partners within the running projects are crucial when it comes to the
research in the measurement area.

The fundamental driving forces of the research are unsophisticated means of
evaluation of the systems at the initial phases of their construction or the
absolute lack of these. It is proven that introducing changes, detecting and fixing
defects, as well as making adjustments in the early stages of the software
(system) life-cycle are cost-effective [110]. Therefore we want to provide
techniques for assessment of product and process artefacts in developments on a
high, more abstract level.

 Main Objective

The main objective of this work is to measure the impact of rigorous
approaches on the development of software systems. The goal is to provide
methods that enable us to assess the quality of the product, be it specification or
model, created with formal or semi-formal techniques. Development process is
evaluated in parallel, albeit to a smaller extent.

The quality property is extensive enough to be decomposed to the quality
attributes that would be investigated with respect to the specific application
environment. Additionally, tool support for automatic data collection, metrics
computation and reporting will be considered as beneficial. Furthermore,
bridging the gap between formal methods research and practical software
development, as well as increasing the usability and understandability of formal
techniques is an enduring part of the research.

 25

 Decomposition of Objective

Critical systems, like systems for spacecrafts or automotive control
components, require treatment that differs in comparison with development of
non-critical systems. Since massive money losses or hazardous impact on life
and health of people are involved in case of system failures, these systems have
to be dependable. Rigorous approaches and their strict objectives have been
applied to software and hardware creation in critical domains [102] [100]. They
include many specific formal techniques and notations, which in numerous cases
provide a tool support.

In our work we use measurements to explore the influence of rigorous
developments on software systems and identify the regularities observed. We
decompose the quality as a system property and investigate a subset of its
attributes, which are important in perspective of dependability property. There
are many usability and maintainability, in particular complexity, issues raised
when talking about formal approaches. Therefore, we focus on various facets of
complexity characteristic, which we believe to be crucial when talking about
quality control.

We are especially interested in managing and, possibly, mastering the
complexity at the system level from the beginning of the developments. We
establish metrics specific to given development environments and apply them to
case studies provided to us by the ongoing projects. By assigning data from case
studies to the created formulas, we enable the computations, which are the
foundation for the further analysis. The collected evidence demonstrates the role
and impact of investigated formal techniques on systems development.

This thesis presents the solutions, metrics and measurements addressing the
following development settings:

• Event-B formal method and modelling language, with tool support of
Rodin platform

• Statecharts notation with special focus on its distinctive case, Progress
Diagrams

• Contract-Based Design applied in Simulink environment.

4.2 Problem Specification and Research

Challenges

In this section we specify the generic problems that we confront in this thesis.
These are rather broad and each one could separately well serve as an interesting
topic for individual research. Therefore, we also limit the scope of the research
challenges by defining the success criteria.

 26

 Problem 1: Usability and user-friendliness of formal

methods

Formal methods are perceived as difficult to comprehend, strenuous to
integrate with the existing business strategy and intricate to combine with the
existing tool chain in the developments. Although they are nowadays
considerably supported with computer-based tools, there is still a gap between
formal methods research and practical software development. This gap needs to
be filled in order to facilitate communication and enable finding a shared view
on a development. Formal methods assure correctness of the system and, as a
result, significantly add value to system quality. However, they still need to gain
more acceptance outside the formal methods community. There should be a
possibility of utilising graphical front-end in the formal developments, since
visualisation increases development awareness. Additionally, general
understandability should be amplified, giving a higher-level control over the
development. Moreover, a common ground for interaction between academia
and industry should be created to facilitate the knowledge exchange and assists
in the development.

 Problem 2: Inadequate and not well documented impact of

formal methods on quality of developments.

There is a deficiency of demonstrative data that prove the influence of formal
methods on developments. It is one of the main accusations and complaints of
people sceptic about formal methods. There is a lack of measurement program or
suggestions about set of metrics that could be useable in resolving these matters.
Only simple and direct measurements have been collected and presented by
means of case studies. The case studies used were questioned as being too
simple to give scientifically significant results. Moreover, the success stories
presented in publications were only scarcely supported by the measurements, if
at all. Since formal methods are applied already at the initial development stage,
the techniques for quality measurements in this phase are immature and need to
be further investigated.

 Problem 3: Continuous growth of system complexity as a

threat to dependability.

Since software systems are present in everyday life, the list of demands
towards them grows. Certain functionality of the system needs to be achieved in
order to fulfil these requirements. Therefore, the constant increase of size and
system complexity is a natural result of systems getting more sophisticated and
feature-rich. There is a need for the techniques that enable the complexity

 27

management by detecting the problems of excessive or undesired complexity as
soon as they arise.

 Problem 4: Insufficiency of software-focused

measurements in hardware-oriented system development.

The reduction of manufacturing costs, energy efficiency and advances of the
control algorithms has nowadays led to more and more software-intensive
development of hardware components and equipment. At the same time, the
products are expected to be of high quality and simultaneously fulfil the growing
requirements of the market. These systems, like control systems or embedded
systems, are often of high criticality. There are many performance measurements
and simulation measures of such systems. However, the software perspective
measurements for rigorous methods in cross-domain developments are almost
nonexistent. There is a need for establishing software-oriented metrics for
modelling and examination of such systems.

4.3 Success Criteria

In this section we present criteria which we denote as a successful outcome of
our research. The problems presented in this thesis in Section 3.2 are further
decomposed to sub-problems and tackled progressively. Here we describe them
with respect to the limited scope of the problems. In Section Overview of

Research Papers we indicate the criteria that are completely fulfilled or
addressed to some degree.

 Criterion 1: Reducing the gap between formal methods

research and practical software development

Goal: increase usability and user-friendliness of formal approaches

Limited scope: Methods in focus of this research problem are Event-B formal
modelling language and visual statechart diagrams. The combination of formal
and graphical development techniques should support the modelling activity and
assist in increasing the usability of the formal development method.
Additionally, measurements should provide supplementary feedback for the
development teams and managers.

Addresses: Problem 1 and partially Problem 2

 Criterion 2: Creating a collection of metrics for

measurement and evaluation of Event-B developments

Goal: enable evidence collection

 28

Limited scope: The goal is to establish metrics and measurements that are
specific for Event-B developments. Measurements should also address the
problem of control and management of syntactical or data-flow complexity. The
analysis of the qualitative and quantitative data should supply direct evidence
that supports the decision about adoption of formal methods.

Addresses: Problems 2 and 3.

 Criterion 3: Creating metrics for the assessment of formal

systems development supported by the use of patterns and

measurements in the perspective of statechart diagrams

Goal: provide mechanisms for development control

Limited scope: The aim is to create metrics and measurements explicitly for the
development modelled with statechart diagrams. Control and management of
structural and data-flow complexity should be provided by measurements and
patterns. The sub-goal is the analysis of the qualitative data, which will serve as
evidence of impact of modelling strategy (here the use of patterns) on the model
under development.

Addresses: Problems 2 and 3.

 Criterion 4: Establishing a complexity management with

metrics and measurement program for rigorously

developed Simulink models

Goal: enable evidence collection; provide mechanisms for complexity control

Limited scope: Development of metrics and a measurement program that are
specific for Simulink models should demonstrate the impact of the rigorous
Contract-Based Design methodology on the created model. Furthermore, the
control and management of structural and data-flow complexity of the Simulink
model should be performed with the use of measurements. The objective is to be
able to analyse the quality aspects of Simulink models development during the
system design process.

Addresses: Problems 3 and 4, also partially Problem 2.

4.4 Research Process

There are a number of publications that proposed software improvement
solutions, e.g. new methodologies, development techniques and tools, without a
pragmatic assessment. Hence, the “hands-on” investigations to analyse the
rigorous developments for the purpose of evaluating the impact of

